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Abstract
The polyaniline (PANI) is an eco-friendly conductive polymer which has been considered for diverse applications. The 
partially oxidized phase of the PANI is useful for the charge storage application. Here, a unique nanograin/nanofiber 
structured PANI was grown on inexpensive stainless steel (SS) current collector by the simple oxidative polymerization 
process and its charge storage properties were systematically investigated. For that, the inexpensive successive ionic layer 
adsorption reaction method was used to grow a uniform nanostructured PANI on the SS conductor. This evolution of the 
nanostructure was studied with the Field emission scanning electron microscope. Furthermore, the as-prepared PANI 
was confirmed by the X-ray diffraction and the Fourier-transform infrared spectroscopy. In the half cell electrochemical 
testing, the prepared PANI exhibited a maximum specific capacitance of 710 F g−1 with a specific discharge capacity of 
119  mAh−1 at 0.2 mA cm−2 in 1 M  H2SO4 for the supercapacitor application. Also, by using the power-law relation it was 
observed that, in a charging and a discharging current, initially a contribution of the diffusive faradaic reactions is more 
as compared with the surface capacitive non-faradaic reactions.
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1 Introduction

Evolution in the electrical systems for a wide spectrum 
of application in recent years have been increased the 
demand for electrical energy consumption [1, 2]. The 
sophisticated energy storage units with desired energy-
power output for targeted electrical systems has been 
the main goal in front of the research community. In the 
global market, batteries, supercapacitors (SCs), hybrid 
energy storage systems have been providing the desired 
requirements of electrical systems. Among several energy 
storage systems, the Li-ion batteries are still dominating 
in the market for different applications, from the medical 
devices to the hybrid vehicles as the main central electri-
cal energy storage and supplying system (EES) unit [3–5]. 

However, SCs with low initial capital costs, low operation-
maintenance costs, with easy and efficient operation, high 
power density have been considered as the best option for 
main backup EES unit [6–8].

The materials generally used in the SC’s stores electri-
cal energy either in the form of columbic (electric dou-
ble layer) and faradaic (redox reaction) charge transfer 
process or the combination of both, which influences its 
power-energy output [9, 10]. The SCs having more electric 
double layer transitions can deliver more electric power 
density due to the fast charge transfer rate of adsorbed 
ions on the electrode surface. Whereas, the SCs having 
more redox transitions can deliver low power density due 
to poor charge transfer rate [11, 12]. More surface adsorp-
tion reaction in the charge transfer process increases the 
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operational life cycle of SC, which generates the poor 
output energy. However, volume expansion and phase 
transition during the redox reaction leads to a decrease in 
the operational lifecycle of SCs [13]. This has been encour-
aging to study the different choices of materials to mini-
mize these possible drawbacks for the efficient SC power-
energy output.

PANI is low cost, chemically stable and good electrical 
conductive polymer with tunable electrochemical proper-
ties. Due to its environmental friendly nature, it is used in 
several applications such as gas sensor [14], anticorrosive 
coatings [15], OLED [16], conductive adhesive, antistatic 
textile, electro-rheological (ER), capacitor, solar cell, elec-
tromagnetic shield interference [17]. The electrical energy 
storage property of PANI involves the fast redox reaction 
due to doping and de-doping of cation from the elec-
trolyte, which makes it a promising candidate for the SC 
application. Here, the degree of protonation decides the 
conductivity of PANI. Fully oxidized state or reduced state 
of the PANI may not be electron-conducting but half oxi-
dized state is conductive [13].

The PANI has been synthesized using chemical oxida-
tive polymerization, chemical bath deposition, non-emul-
sion, electrochemical, interfacial polymerization method 
[18–23]. These methods have serious drawbacks such as 
the polymerization of aniline monomer which generates 
unnecessary precipitations causing wastage of material. 
Also, in the electro-polymerization the desired electro-
chemical setup is necessary. On the other side, a simple, 
inexpensive successive ionic layer adsorption reaction 
(SILAR) method has been used for the synthesis of PANI to 
overcome these drawbacks [24–26]. Also, using the SILAR 
method it can be possible to synthesize a large area thin 
films with uniform surface morphology in which thick-
ness and composition can be easily controlled by easy 
preparative parameters such as a number of cycles and 
process of immersion [27, 28]. Previously PANI thin films 
have been synthesized using SILAR method, Kulkarni et al. 
[26] prepared a fused nanorods on stainless steel and glass 
substrate, Parez et al. [29] prepared a fiber like porous 
structure on Whatman filter paper. Arejola et al. [30] pre-
pared on polyethylene board, Patil et al. [31] used different 
surfactants to prepare different nanostructures on SS sub-
strate, Chougale et al. [32] prepared interconnected nano-
fibrous structure on a glass substrate. However, more stud-
ies related to the capacitive properties of PANI prepared by 
SILAR method are needed which is imperative for the SC 
application. The inexpensive, simple preparation method 
for PANI and the study of its electrochemical properties 
may provide a very good insight of its possible application.

In this study, the PANI films were synthesized on SS 
substrate by SILAR method. A number of SILAR cycles 
was optimized to get the films thickness of PANI on SS 

substrate. The filed emmision scanning electron micro-
scope (FE-SEM) analysis was performed in order to under-
stand the development of nanostructure on the substrate. 
The optimized PANI film was subjected to X-ray diffraction 
(XRD) and fourier-transform infrared (FT-IR) spectroscopy 
studies for further confirmation. Finally, the electrochemi-
cal properties of PANI films were tested by the three elec-
trode measurement setup in order to understand the 
capacitive origin and to measure the specific capacitance 
for the SC application.

2  Experimental

2.1  Chemicals and materials

All chemicals used for the synthesis were analytical 
grade. Aniline monomer,  H2SO4, ammonium persulphate 
((NH)4)2S2O8, were purchased from S.D. fine chemicals, 
India. All the solutions were prepared in double distilled 
water.

2.2  Synthesis of PANI films

The SS substrate was used as a current collector base 
for deposition of a PANI thin film. Before deposition, the 
SS substrates were mirror polished, then etched in 10% 
 H2SO4 for 2 min and subjected to ultrasonication in order 
to remove surface contamination [33]. As shown in Fig. 1, 
the four solution baths were prepared for a SILAR setup. A 
chemical bath A is filled with 0.5 M aniline monomer + 1 M 
 H2SO4, a chemical bath C contains 1 M ammonium persul-
phate, Bath B and D are filled with double distilled water.

In the typical procedure of single SILAR cycle, the pre-
treated SS substrate was dipped in the chemical bath A for 
10 s for adsorption of an aniline monomer on its surface. 
Then, this substrate was taken out and rinsed in double 
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Fig. 1  The schematic of a PANI thin film by SILAR method
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distilled bath B for 5 s to remove loosely bound adsorbed 
aniline monomer. Furthermore, the substrate with the 
adsorbed aniline monomer was taken out from bath B and 
dipped into the chemical bath C for 15 s. In this step, the 
oxidation of adsorbed aniline monomer takes place due to 
the presence of an ammonium persulphate to form a thin 
layer of PANI on to the substrate surface. Then, the substrate 
coated with the PANI thin film was taken out from the bath 
C and rinsed in the double distilled bath D for 5 s to remove 
loosely bound species. The nanostructured PANI were pre-
pared by repeating 20, 25, 30 and 35 SILAR cycles designated 
as P-1, P-2, P-3 and P-4 respectively.

2.3  Preparation of electrode for electrochemical 
testing

The electrochemical testing of the PANI thin films was per-
formed in 1 M  H2SO4. In typical three-electrode setup, the 
prepared PANI thin films on SS were directly used as a work-
ing electrode, the saturated calomel electrode (SCE) was 
used as a reference electrode and the platinum was used as 
a counter electrode. The electrochemical testing was carried 
out by cyclic voltammetry (CV), galvanostatic charge–dis-
charge (GCD) and electrochemical impedance spectroscopy 
(EIS) studies. The specific capacitance is measured from CV 
and nonlinear GCD curves using following relation [34, 35].

(1)C =
∫ IdV

2 × v × (ΔV )
(F)

(2)C =
2I ∫ VΔt

(

ΔE − IRdrop
)2

(F)

where C is capacitance, ∫ IdV  is area under CV curve in CV 
 s−1, v is the scan rate in V s−1, ΔV is potential window in V, 
I is the constant discharge current in A, ∫ VΔt is the area 
under the discharge curve, IRdrop is the IR voltage drop of 
the galvanostatic discharge curve in V. The CS is the specific 
capacitance in F  g−1 and m is the mass of active material 
on to the current collector in g. The specific capacitance 
is voltage-dependent parameter however for non-linear 
GCD curves charge storage is also expressed in terms of 
specific discharge capacity which is independent of work-
ing potential, given by following relation [36].

where Qd is the specific discharge capacity in mAh  g−1, td 
is the discharge time in s.

3  Result and discussion

In single SILAR cycle, ammonium persulphate oxidizes 
aniline monomer to form a PANI hydrogen sulfate. A reac-
tion mechanism regarding the formation of PANI could be 
shown in Fig. 2 [37, 38]. The thickness of prepared thin 
film was measured in terms of deposited mass by gravi-
metric weight difference method. The mass of P-1, P-2, P-3 
and P-4 is estimated as 0.23, 0.41, 0.66 and 0.51 mg cm−2 
respectively. It is observed that, the deposited mass 
increased from 20 to 30 cycles and gets decreased from 
30 to 35 cycles due to the overgrowth and subsequent 
collapsing of the film [39–42]. Meticulous monitoring of 

(3)CS =
C

m

(

F g−1
)

(4)Qd =
I × td

m × 3.6

(

mAhg−1
)

Fig. 2  The reaction mechanism 
of PANI formation
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the film thickness is important because an increase in the 
film thickness increases mass loading on the substrate 
which reduces the stress to the substrate, results in peel-
ing off the overgrown mass [42]. The maximum mass is 
observed for P-3 which was further evaluated by XRD and 
FT-IR studies.

The structural evolution of PANI can be understood by 
the FE-SEM study. Different magnification FE-SEM images 
of P-1, P-2, P-3 and P-4 are shown in Fig. 3. Each SILAR cycle 
introduce more PANI to the film by polymerization pro-
cess. After 20 SILAR cycles, the small grains of PANI are 
formed on the substrate surface as shown in Fig. 3a, b. 
With 25 SILAR cycles, the grain structure converted into 
the clusters of PANI as shown in Fig. 3c which are high-
lighted by circles. The high magnification image of these 
highlighted regions clearly evident that the clusters are 
composed of a unique mixed nanograins/nanofibers struc-
ture as shown in Fig. 3d. After 30 SILAR cycles, the three-
dimension growth of clusters formed a porous network of 
mixed nanograins/nanofiber structure of PANI as shown 
in Fig. 3e, which are highlighted by circles. The magnified 
image of these pores reveals the formation of a porous-
compact structure composed of the nanograins/nanofib-
ers of PANI as shown in Fig. 3f. The depletion of porosity 
in the compact structure is observed for 35 SILAR cycles 
as shown in Fig. 3g, h due to overgrowth by more addi-
tion of PANI which is consistent with the gravimetric mass 
measurement. Several studies reported the similar growth 
mechanism by oxidative polymerization reaction [43–45]. 
The approximate diameter of PANI nanofiber is found in 
the range of 100–125 nm. This porous mixed nanograins/
nanofiber structured PANI is very useful for electrolyte ion 
intercalation process [10, 46].

The X-ray diffraction of P-3 was performed at an angle 
2θ from 20° to 80° as shown in Fig. 4a. Several reflecting 
planes are observed in the region of 20° to 35° indicating 
the presence of some degree of crystallinity in P-3. The 
broad peak centered around 25.2° and 28.1°, exhibits the 
amorphous nature of P-3. The prominent characteristics 
peaks observed at 2θ values of 20.8°, 25.2°, 28.1°, 29.0° 
and 33.3° are associated with JCPDS card no. 53-1717. 
In addition to that, a peak around 22.5° (not highlighted 
in Fig. 4a) is associated with the (021) lattice plane of 
JCPDS card no. 53-1891, both are associated with the 
orthorhombic crystal structure [47–52].This small degree 
of crystallinity is ascribed to the periodicity of benzenoid 
and quinoid rings present in the PANI structure [53, 54]. 
Furthermore, P-3 was subjected to the FT-IR analysis as 
shown in Fig. 4b revealing several IR absorption peaks 
present in the sample. The protonation of PANI induces 
the stretching modes in  NH2+, represented by 3434 cm−1 
[55]. The peak present at 2923 cm−1 is associated with 
N–H mode [55]. The peaks present at 1573 cm−1 and 

1492 cm−1 are attributed to the well-known C–C stretch-
ing vibration mode of the quinoid ring and benzenoid 
ring [56, 57]. The stretching vibration of C–N with the 
aromatic ring is represented by 1305 cm−1 [55, 58]. The 
peaks at 1109, 810, 616 and 504 cm−1 are associated with 

Fig. 3  The FE-SEM images of P-1 (a, b), P-2 (c, d). P-3 (e, f) and P-4 
(g, h) samples prepared by SILAR method with different magnifica-
tions
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the bending vibrations of C–H bonds in the aromatic 
rings [55, 56].

All PANI thin films prepared at different SILAR cycles 
were subjected to CV at a potential window from − 0.2 to 
0.8 V (vs. SCE) at a constant scan rate of 50 mV s−1 as shown 
in Fig. 5a. All CV curves show a broad oxidation and reduc-
tion peak ascribed to the pseudocapacitive behavior of 
PANI. These broad peaks are associated with the conver-
sion of leucomeraldine to emeraldine and emeraldine to 
pernigraniline forms of PANI [59–61]. It is observed that 
the area under CV curves increased from P-1 to P-3 and 
it is maximum for P-3. Here, the increased mass from P-1 
to P-3 effectively increased the utilizing surface of PANI 
nanostructure which may increase the number of transi-
tions including redox transitions due to the diffusion of 
ions along with surface capacitive transitions due to the 
electric double layer. This is consistent with the FE-SEM 

study which showed that the porosity of PANI is increased 
from P-1 to P-3. However, P-4 has a low area under the CV 
curve than P-4 ascribed to decreased mass and depleted 
porosity which effectively decreased utilizing surface [62].

Figure 5b shows the plot of specific capacitance of P-1, 
P-2, P-3 and P-4 calculated from CV curves using relations 1 
and 3. The P-3 exhibited a maximum specific capacitance 
as 164 F  g−1 at a scan rate of 50 mV s−1. The P-1, P-2 and P-4 
exhibited specific capacitance values as 69, 125 and 84 F 
 g−1 respectively. To see the scan rate dependence, the P-3 
was subjected at different scan rates from 5 to 100 mV s−1 
as shown in Fig. 5c. It shows that the non-rectangular CV 
current response increased with the scan rate indicating 
the evolution of charge storage is pseudocapacitive in ori-
gin [38]. Also, it is observed that the oxidation and reduc-
tion peaks get shifted towards higher and lower poten-
tials with increasing scan rates ascribed to the polarization 
effect [10]. Kuila et al. [63] previously explained the detail 
charge storage mechanism in the PANI. The total electric 
charge storing in a typical electrode is the addition of the 
surface capacitive charge due to the double layer transi-
tion and the faradaic charge due to the redox transitions 
in an ionic diffusion process. In order to understand the 
charge storage contribution from CV, the power law rela-
tion is used which is given by [64].

where i(V) is the voltage-dependent current value for a 
given scan rate v. Both a and b are the adjustable param-
eters. The b values are estimated from the slope of log i 
versus log v. If b = 1, the charge storage is purely surface 
capacitive and for b = 0.5, the charge storage is diffusion 
controlled capacitive. Figure 5d shows the b values of P-3 
calculated using relation 5. The estimated b-values dur-
ing the charging/anodic scan (0.2–0.8 V) and during the 
discharging/cathodic scan (− 0.2 to 0.4 V) are shown in 
Fig. 5d. During the charging process, b values increased 
from 0.53 (0.2 V) to 0.91 (0.7 V) indicating involvement of 
the diffusion capacitive transitions at initial potentials and 
the surface capacitive transitions at higher potentials in 
the PANI. Maximum b value occurred at a potential of 0.7 V 
which is more than the oxidation potential of the PANI as 
seen in CV (0.2–0.6 V). This indicates that after reaching 
the oxidation potential, the surface capacitive transitions 
are more involved in the charge storage process. However, 
during the discharging process, the b values increased 
from 0.59 (0.4 V) to 0.88 (− 0.1 V) indicating involvement 
of the diffusion capacitive transitions at initial potentials 
and the surface capacitive transitions at lower potentials 
in the PANI. Also, similar to the charging process during 
the discharging process, the surface capacitive reactions 
are more involved after reaching the reduction potential. 
Inset of Fig. 5d[i] shows the plot of log i versus log v for 

(5)i(V ) = avb

(a)

(b)

4000 3500 3000 2500 2000 1500 1000 500

29
23

14
9215

73

11
09

13
05

81
0

61
6

34
34

In
te

ns
ity

 (A
.U

.)

Wavenumber (cm-1)

PANI
50

4

20 30 40 50 60 70 80

(1
10

)

(2
10

)

(1
20

)

(2
10

)
(2

11
)

** ∆

* JCPDS- 53-1717 

**

∆

∆

∆ stainless steel
In

te
ns

ity
 (A

.U
.)

Angle (2∆)

∆

*

(0
03

)

Fig. 4  The XRD pattern (a), and FT-IR spectrum (b) of P-3 sample 
prepared by SILAR method



Vol:.(1234567890)

Research Article SN Applied Sciences          (2019) 1:1333  | https://doi.org/10.1007/s42452-019-1403-6

− 0.1 V(b = 0.88) and 0.7 V (b = 0.91) with its linear fitted 
curve. For the analytical study, the current contribution at 
given potential can be given by [64, 65]

where, k1v and k2v1/2 are associated with the surface 
capacitive current contribution and diffusion-controlled 
intercalation current contribution. The values of k1 and k2 
could be calculated by measuring the slope and the inter-
cept of Eq. 7.

The surface capacitive contribution in CV curve of the 
P-3 at 50 mV s−1 is shown in the inset of Fig. 5d[ii]. It esti-
mated 48.7% of surface capacitive current contribution 
(shaded area) in the total current (solid line) ascribing the 
pseudocapacitive electrochemical property of the PANI.

The charge–discharge profile of P-3 at different con-
stant current densities from 0.2 to 1.0 mA cm−2 are shown 

(6)i(V ) = k1v + k2v
1∕2

(7)i(V )∕v1∕2 = k1v
1∕2 + k2

in Fig. 6a. The nonlinear charge–discharge profile at the 
all current densities attributed to the pseudocapacitive 
electrical properties of PANI [50, 55, 60]. The initial volt-
age drop in the discharge curve is associated with the high 
internal resistance of the P-3 [59]. Due to the non-linear 
discharge profile of PANI, its electrical charge storage can 
be represented by both Cs and Qd as given in Eqs. 2, 3 and 
4. Estimated Cs and Qd values of P-3 from the GCD curves 
are shown in Fig. 6b. The maximum value of Cs is estimated 
as 710 F  g−1 at 0.2 mA cm−2 and other estimated values 
of Cs are 616, 553, 527 and 521 F  g−1 for 0.4, 0.6, 0.8 and 
1.0 mA cm−2 respectively. In further, the maximum value of 
Qd is estimated as 119 mAh  g−1 at 0.2 mA cm−2 and other 
estimated values of Qd are 103, 95, 89, 86 mAh  g−1 at 0.4, 
0.6, 0.8 and 1.0 mA cm−2 respectively. In previous studies 
Chougale et al. [32] reported 590 F  g−1, Dhawale et al. [66] 
reported 503 F  g−1, Sivaraman et al. [67] reported 480 F 
 g−1, Khdary et al. [68] reported 532 F  g−1, Guan et al. [69] 
reported 548 F  g−1, Yan et al. [70] reported 470 F  g−1 for 
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PANI. The estimated specific capacitance of 710 F  g−1 is 
more than previously reported studies ascribed to the 
unique porous nanograin/nanofiber morphology of PANI.

The stability of the P-3 was studied for 1000 CV cycles 
at a scan rate of 100 mV s−1. The estimated specific capac-
itance values with the number of CV cycles are shown 
in Fig.  6c. The amount of 52.5% capacity retention is 
observed after 1000 cycles. This electrochemical degra-
dation of the P-3 may be associated with the mechani-
cal stress induced during the charging and discharging 
process leads to the dissolution of PANI in acidic media 
[71, 72]. In further analysis, the EIS of P-3 was performed 
after 1st and 1000th cycle at a frequency range of  106–100 
Hz with an amplitude of 5 mV; respective Nyquist plots 
are shown in Fig. 6d with the fitted equivalent circuit dia-
gram is shown in the inset. The curve is semicircular in the 
high frequency region and inclined at the low frequency 
region. The intercept of the curve on real impedance (Z′) 
represents a combined resistance of the electrode mate-
rial and contact resistance at the interface between the 
electrode material-current collector termed as equivalent 

series resistance (ESR) or solution resistance  (RS). The diam-
eter of the curve semicircle at high frequency ascribed 
to the charge transfer resistance  (RCT) at the interface of 
the electrode material and the electrolyte. The slope of 
45° portion of the curve represents a Warburg resistant 
 (ZW) associated with the frequency dependent ion diffu-
sion in the vicinity of the electrode surface. CPE-1 defines 
the pseudocapacitance of active material.  RL and CPE-2 
are the voltage dependent charge transfer components 
placed parallel in the circuit [33]. The  RS value of both 1st 
and 1000th curves are nearly 1 Ω as shown in the inset of 
Fig. 6d. However, the  RCT value of 1st and 1000th curves are 
323 and 526 Ω respectively. The increase in the  RCT value 
after the 1000th cycle is attributed to the decrease in the 
conductivity of PANI due to the deprotonation over long 
tome immersion [73, 74]. In previous studies, Hui et al. 
prepared the PANI electrode by the pressing composi-
tion mixture of PANI nanofiber powder, acetylene black 
and poly(tetrafluoroethylene) onto stainless steel mesh 
which exhibited  RS values of 1.63 Ω [69]. Li et al. [75] pre-
pared the PANI electrode by drop casting prepared PANI 
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Fig. 6  a The galvanostatic charge discharge curves of P-3 at dif-
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1st and 1000th CV cycles, inset shows the fitted equivalent circuit 
diagram and magnified view of Nyquist plots
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on the glassy carbon which exhibited the  RS values in the 
range of 5–8 Ω. In another study, Li et al. [76] prepared 
the PANI electrode by pressing the composition mixture of 
prepared PANI powder onto the Ni-mesh which exhibited 
the  RS values between of 5–7 Ω. Poli et al. prepared the 
PANI on a carbon fiber felt which exhibited the  RS values 
of 1.2–1.8 Ω [77]. Here, the PANI exhibited  RS value of 1 Ω 
indicates formation of good electrical contact between SS 
and PANI. However, the large value of  RCT can be ascribed 
to the major contribution of the diffusive intercalation 
charge transfer process in PANI as depicted in above elec-
trochemical studies.

4  Conclusion

In conclusion, a simple, inexpensive SILAR method is suc-
cessfully employed for the synthesis of unique mixed 
nanograin/nanofiber structured PANI on the inexpen-
sive SS current collector. The FE-SEM along with XRD, 
FT-IR studies confirmed the formation of porous com-
pact nanograin/nanofiber nanostructured PANI. The 
PANI prepared at 30 SILAR cycles exhibited a maximum 
specific capacitance of 710 F  g−1 at a current density of 
0.2 mA cm−2 with specific discharge capacity of 119 mAh 
 g−1 in 1 M  H2SO4. The electrochemical studies revealed 
that the total current contribution during the charging and 
discharging process in the PANI are initiated by the fara-
daic diffusion process due to the intercalation of electro-
lyte ions in the unique nanograin/nanofiber structure and 
later are dominated by the surface capacitive non-faradaic 
process after reaching the oxidation–reduction potential. 
This simple, room temperature synthesis method is very 
useful for the fabrication of porous PANI electrodes for 
pseudocapacitive energy storage application.
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